MARK SCHEME for the May/June 2014 series

4037 ADDITIONAL MATHEMATICS

4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2		Syllabus 4037	Paper 12	
	GCE O LEVEL – May/June 201	GCE O LEVEL – May/June 2014		
1	$\frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A)\cos A}$ $\frac{\cos^2 A + 1 + 2\sin A + \sin^2 A}{(1 + \sin A)\cos A}$ $= \frac{2(1 + \sin A)}{(1 + \sin A)\cos A}$ 2	M1 M1 DM1	cancelling of $(1 + s)$	n of $(1 + \sin A)^2$ ctorisation and $\sin A$ factor
	$=\frac{2}{\cos A}=2\sec A$ Alternative:	A1	A1 for use of - c final answer	$\frac{1}{\cos A} = \sec A$ and
	$\frac{\cos A (1 - \sin A)}{(1 + \sin A)(1 - \sin A)} + \frac{1 + \sin A}{\cos A}$ $= \frac{\cos A (1 - \sin A)}{1 - \sin^2 A} + \frac{1 + \sin A}{\cos A}$	M1	$\frac{\mathbf{M1} \text{for multiplyi}}{\frac{1-\sin A}{1-\sin A}}$	ng first term by
	$=\frac{\cos A \left(1-\sin A\right)}{\cos^2 A}+\frac{1+\sin A}{\cos A}$	M1	$M1 for (1 - \sin A)(1 + \sin A)$ identity	expansion of 4) and use of
	$=\frac{1-\sin A}{\cos A} + \frac{1+\sin A}{\cos A}$	M1	M1 for simplificat	
	$=\frac{2}{\cos A}=2\sec A$	A1	A1 for use of - c final answer	$\frac{1}{\cos A} = \sec A$ and
2 (a) (i)	00	B1		
(i)	\bigcirc	B1		
(b) (i)	6	B1		
(ii)	5	B1		
(iii)	9	B1		

3 (i) -15 -1 -45 (ii) Maximum	GCE O LEVEL – May/June 201	4 B1 B1 B1 B1	4037 12 B1 for shape B1 for $y = 2$ (must have a graph) B1 for $x = -0.5$ and 2 (must have a
-1.5 -1 -0.5		B1	B1 for $y = 2$ (must have a graph)
-1.5 -1 -0.5	43 1 13 2 23	B1	B1 for $y = 2$ (must have a graph)
	43 1 13 2 23		
	45 1 13 2 23	B1	B1 for $r = 0.5$ and 2 (must have a
(ii) Maximum			BI for $x = -0.5$ and 2 (must have a graph)
	Maximum point occurs when $y = \frac{25}{8}$		M1 for obtaining the value of y at the maximum point, by either completing the square, differentiation, use of discriminant or symmetry.
so $k > \frac{25}{8}$		A1	Must have the correct sign for A1 Ignore any upper limits
4 $\int_0^a \sin 3x \mathrm{d}x$	$=\frac{1}{3} dx = \frac{1}{3}$	B1,B1	B1 for $k \cos 3x$ only, B1 for $-\frac{2}{3}\cos 3x$ only
$\left[-\frac{2}{3}\cos 3t\right]$	$\begin{bmatrix} a \\ b \end{bmatrix}_{0}^{a} = \frac{1}{3}$	M1	M1 for correct substitution of the correct limits into their result
	$\left(-\frac{2}{3}\right) = \frac{1}{3}$	A1	A1 for correct equation
$\cos 3a = 0.$		M1	M1 for correct method of solution of equation of the form $\cos ma = k$
$3a=\frac{\pi}{3}$, a	$=\frac{\pi}{9}$	A1	A1 allow 0.349, must be a radian answer
5 (i) $2^{5x} \times 2^{2y} = 1$ leads to $5x$	—	B1, B1 DB1	B1 for 2^{2y} , B1 for 2^{-3} , B1 for dealing with indices correctly to obtain given answer
(ii) $7^x \times 49^{2y}$ x + 4y = 0	= 1 can be written as	B1 B1	B1 for either 7^{4y} or 7^{0} seen B1 for $x + 4y = 0$
Solving 5x	x + 2y = -3 and $x + 4y = 0$ leads to	M1	M1 for solution of their simultaneous equations, must both be linear
$x = -\frac{2}{3}, y$	$=\frac{1}{6}$	A1	A1 for both, allow equivalent fractions only

	Page 4		Mark Scheme		Syllabus	Paper
			GCE O LEVEL – May/June 2014		4037	12
6	(a)	YX	and ZY	B1,B1	B1 for each, mu order,	ust be in correct
	(b)	$\mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix},$		M1	M1 for pre-multiplication by A	
		=	$\frac{1}{3} \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix}$	B1,B1	B1 for $-\frac{1}{3}$, B1 f	
		=	$\frac{1}{3} \begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	DM1 A1	DM1 for atter multiplication A1 allow in eithe	•
		Alte	rnative method:			
		(5	$ \begin{array}{c} -2 \\ 4 \\ 1 \end{array} \begin{pmatrix} a \\ c \\ d \end{pmatrix} = \begin{pmatrix} 3 \\ -6 \\ -3 \end{pmatrix} $	M1	M1 for a composition obtain 4 equations	
			Is to $5a - 2c = 3$, $5b - 2d = 9$ a + c = -6, $-4b + d = -3$	A2,1,0	-1 for each incorre	ect equation
		Solutions give matrix		M1	M1 for solution to	find 4 unknowns
		$-\frac{1}{3}$	$\begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{or} \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	A1	A1 for a correct, final matrix	

	Page 5	5	Mark Scheme		Syllabus	Paper	
			GCE O LEVEL – May/June 201	4	4037	12	
7	(i)	2	$\frac{\theta}{2} = \frac{6}{8}, \ \frac{\theta}{2} = 0.8481 \text{ or better}$ $12^2 = 8^2 + 8^2 - 128 \cos \theta$	M1	M1 for a complete method to find either θ or $\frac{\theta}{2}$		
		$\theta = 1$.6961 or better	A1	Answer given.		
		$\frac{1}{2} \times 1$	using areas $12 \times 2\sqrt{7} = \frac{1}{2}8^2 \sin \theta$ oe				
		sın 6	$\theta = 0.9922$, $\theta = 1.4455$ or 1.6961	M1		the area of the rent forms	
				A1	triangle in 2 different forms A1 for choosing the correct angle.		
	(ii)	Arc	$\text{length} = (2\pi - 1.696) \times 8$	M1	M1 for correct a or major arc lengt	ttempt at a minor h	
		(36.6	597 or 36.7)	A1	A1 for correct major arc length allow unsimplifiedA1 for 48.7 or better		
		Perir	meter = $12 + (2\pi - 1.696) \times 8$ = 48.7	A1			
	(iii)	Area	$=\frac{8^2}{2}(2\pi-1.696)+\frac{8^2}{2}\sin 1.696$	M1,M1	of major sector		
			=178.5, 178.6, awrt179	A1			
		Alte	rnative:				
		Area	$= \pi 8^2 - \left(\frac{1}{2}8^2(1.696) - \frac{8^2}{2}\sin 1.696\right)$		M1 for attempt at area of circle - area of minor sector M1 for area of triangle		

	Page 6	;	Mark Scheme		Syllabus	Paper
			GCE O LEVEL – May/June 201	4	4037	12
				1	1	
8	(a) (i)	720		B1		
	(ii)	240		B1		
	(iii)	Start	s with either a 2 or a 4: 48 ways	B1	allow unevaluated	
			s not start with either a 2 or a 4: 96 ways starts with 1 or 5)	B1	allow unevaluated	
		Tota	1 = 144	B1	must be evaluated	
		Alte	rnative 1:			
		Ends	s with a 2, starts with a 1,4 or 5 : 72 ways s with a 4, starts with a 1,2 or 5 : 72 ways 1=144	B1 B1 B1		
		Alte	rnative 2:			
		240	$-(2 \times 2 \times {}^{4}P_{3}) \text{ or } (4 \times {}^{4}P_{3} \times 2) - (2 {}^{4}P_{3})$ = 144	B2 B1	B2 for correct allow <i>P</i> notation	expression seen,
		Alte	rnative 3:			
		${}^{3}P_{1} \times$ =14	${}^{4}P_{3} \times {}^{2}P_{1}$ or $3 \times 4 \times 2$	B2 B1	Allow <i>P</i> notation h	ere, for B2
	(b)	With	a twins : ${}^{16}C_4$ (=1820)	B1		
		With	nout twins: ${}^{16}C_6 \ (=8008)$	B1		
		Tota	1: 9828	B1		
	Alte		rnative:			
		$^{18}C_6 = 98$	$-\left(2\times^{16}C_{5}\right)$ 28	B1,B1 B1	B1 for ${}^{18}C_6$ –, ,	B1 for $2 \times {}^{16}C_5$

	Page 7	7	Mark Scheme		Syllabus	Paper	
			GCE O LEVEL – May/June 2014		4037	12	
9	(i)		$\frac{4000}{\pi r^2}$ or $\pi r^2 h = 4000$ $2\pi rh + 2\pi r^2$	B1			
		<i>A</i> =	$2\pi r \frac{4000}{\pi r^2} + 2\pi r^2$	M1 A1	M1 for substitutio <i>their</i> equation for A1 Answer given		
	(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r}$	$=-\frac{8000}{r^2}+4\pi r$	B1, B1	B1 for each term correct		
		Whe	$n\frac{dA}{dr} = 0$, $r^3 = \frac{8000}{4\pi}$	M1	M1 for equatin attempt to find r^3	-	
		leading to $A = 1395, 1390$		M1 A1	M1 for substitutiobtain <i>A</i> . A1 for 1390 or aw		
		Cir Cir	$r = \frac{16000}{r^3} + 4\pi$, h, is positive so a minimum.	√B1	$\sqrt{B1}$ for a comple and conclusion.		

Pag	je 8	Mark Scheme	Syllabus	Paper	
		GCE O LEVEL – May/June 201	4037 12		
10 (i)	Velo	$\text{ocity} = 26 \times \frac{1}{13} (5\mathbf{i} + 12\mathbf{j})$	M1	M1 for $\frac{1}{13}(5i + 12j)$	
		$= 10\mathbf{i} + 24\mathbf{j}$	A1		
		rnative 1:			
	10 i	$+24\mathbf{j} = \sqrt{10^2 + 24^2}$ = 26	M1	M1 for working fit to obtain the given	-
		wing that one vector is a multiple of the r, hence same direction	A1	A1 for a complete	ly correct method
		rnative 2:			
		$\overline{+12^2} = 13$, $13k = 26$, so $k = 2$ picty $= 2(5\mathbf{i} + 12\mathbf{j})$,	M1	M1 for attempt 'multiple' and app vector	
	Velo	ocity $= 10\mathbf{i} + 24\mathbf{j}$	A1	A1 for a complete	ly correct method
	Alte	rnative 3:			
	Use	of trig: $\tan \alpha = \frac{12}{5}$, $\alpha = 67.4^{\circ}$			
	Velo	ocity $26\cos 67.4^{\circ}i + 26\sin 67.4j$	M1	M1 for reaching this stage	
	Velo	$ocity = 10\mathbf{i} + 24\mathbf{j}$	A1	A1 for a complete	ly correct method
(ii)		tion vector = $4(10\mathbf{i} + 24\mathbf{j})$ $0\mathbf{i} + 96\mathbf{j}$	B1	Allow either form	for B1
(iii)	(40i	+96j + $(10i + 24j)t$ oe	M1	M1 for <i>their</i> (ii) +	- /
			A1	$(10\mathbf{i} + 24\mathbf{j}) \times (t + 4$ A1 correct answer	,
(iv)	(120	(i + 81j) + (-22i + 30j)t oe	B 1		
(v)	40 + 10t = 120 - 22t or 96 + 24t = 81 + 30t t = 2.5 or 18:30		M1	M1 for equating li	ke vectors
			A1	A1 Allow for $t = 2$	2.5
	Posi	tion vector $= 65\mathbf{i} + 156\mathbf{j}$	DM1	DM1 for use of t to obtain position vector	
			A1	A1 cao	

Page 9		Mark S	Scheme		Syllabus	Paper
		GCE O LEVEL -	- May/June 2014	ļ	4037	12
11 (a)	tan 🤉	$x(\tan x + 5) = 0$ x = 0, x = 0°, 180° x = -5, x = 101.3°		B1,B1 B1	B1 for each , mus work	st be from correct
(b)	(b) $2(1-\sin^2 y) - \sin y - 1 = 0$ $2\sin^2 y + \sin y - 1 = 0$ $(2\sin y - 1)(\sin y + 1) = 0$			M1	M1 for use of correct identity at attempt to solve resulting 3 ter quadratic equation.	
	sin y	$y = \frac{1}{2}, y = 30^{\circ}, 150^{\circ}$		A1,A1		
	sin y	$=-1, y = 270^{\circ}$		A1		
	·	$\left(2z - \frac{\pi}{6}\right) = \frac{1}{2}$		M1	M1 for dealing we and obtaining $\frac{\pi}{3}$ of	-
	(2z	$\left(-\frac{\pi}{6}\right) = \frac{\pi}{3}$				
	$z = \frac{1}{2}$	$\frac{\pi}{4}$ or 0.785 or better		A1		
	(2z	$\left(-\frac{\pi}{6}\right) = \frac{5\pi}{3}$		M1	M1 for obtaining a $\left(2z - \frac{\pi}{6}\right) = 2\pi - t$	-
	$z = -\frac{1}{2}$	$\frac{11\pi}{12}$ or 2.88 or better		A1		